距离展会开幕还有

0

AI在5G时代将带来哪些变革?

发布时间:2018年11月30日 文章来源:南亚社会公共安全科技博览会作者:南亚安博会

在今年 GTC 中国场的分会场,英伟达电信业 AI 及加速计算计划全球行业发展总监 Soma Velayutham 介绍了在 5G 时代,GPU 和 AI 技术的组合将为电信行业带来的变革与支持,以及开发人员、合作伙伴和生态系统如何协作构建 AI 和加速工程应用程序。
在 AI 时代,英伟达的身份早已不是一家单纯的游戏 GPU 公司,随着 GPU 在高性能计算、深度学习、AI 人工智能等行业的应用,英伟达的触角已经伸向了各行各业。5G 时代已经近在眼前,英伟达的下一个目标也锁定在电信运营商市场。
5G 网络不仅速度更快,承载的业务也越来越多,对计算能力的要求也会极速增加,英伟达认为,GPU 比传统 CPU、FPGA 更能胜任这些应用。在电信行业,电信运营商将 GPU 加速 AI、深度学习和分析技术融为一体,致力于构建并优化智能化电信网络,同时为 5G 无线网络的商用提供了智能化支持。
在今年 GTC 中国场的分会场,英伟达电信业 AI 及加速计算计划全球行业发展总监 Soma Velayutham 介绍了在 5G 时代,GPU 和 AI 技术的组合将对电信行业带来的变革与支持,以及开发人员、合作伙伴和生态系统如何协作构建 AI 和加速工程应用程序。
Soma 是一位成绩斐然的串行技术专家,拥有 20 多年的软件和电信行业经验。Soma 在数据科学和无线通信领域拥有多项专利,并在突破性创新成果方面保持着良好几率,他经历过完整产品生命周期的原型思考,曾担任战略、商业管理、产品管理和创新孵化项目的带头人。
Soma 谈到,GPU 计算现在已经在图形、HPC、AI 等行业带来了革命。未来的电信市场需要承载云 AR/VR、协助型机器人、智能城市、联网汽车以及智能园区等等业务,前景广阔。未来每个客户需要的网络处理、流量都在增加,问题是每个客户带来的营收会持平,爆炸性增长的成本就成了问题。
Soma 认为,5G 时代电信行业将面临四大新挑战:
1)100Gbps 的高吞吐量;
2)边缘计算效率提升 100 倍;
3)小于 1ms 的低时延服务,这对频谱效率要求非常高;
4)数据量爆发,100 倍的扩张。
目前,中国移动、AT&T、沃达丰等运营商正在提供多元化的数字生活服务,包括视频、云服务、IoT、AR/VR、移动游戏等等。为了降低成本,英伟达使用了虚拟化、SDN 软件定义网络、5G 及边缘计算等新技术,这些技术可以带来相比以前三到四倍的成本节省。
Soma 认为,4G 技术不仅仅只是带来了网络联通的便捷性,还改变了我们的消费习惯,因为云计算和移动设备的组合,打车、外卖等移动应用软件大量涌现。运营商的价值已经转移到 OTT 公司当中,电信公司失去的市场和份额实际上被移动应用公司拿走了。
在 5G 时代,Soma 预测了未来智能汽车、手机需要的网络流量,目前智能手机每月只有 1-2GB 流量生产,2050 年智能汽车每小时流量就能产生 40TB,每月需要 50-500GB 流量,智能汽车未来的无线数据流量会从现在手机流量的 17EB 大幅增长到 5000EB。
Soma Velayutham 谈到近 5 年来 GPU 计算的崛起速度:
5 年来 GPU 开发者增加了 10 倍、CUDA 下载量增长了 5 倍、GTC 注册者增加了 4 倍、HPC 中 TOP50 系统的 GPU 性能增长了 15 倍。
与此同时,GPU 计算性能也在不断增长:
传统使用 CPU 簇的超算中,600 台双路 CPU 服务器功耗高达 360KW,现在使用 Tesla V100 服务器只要 30 台四路服务器即可,功耗也降至 48W,成本是之前的 1/5,占用面积是之前的 1/7,功耗也是之前的 1/7。
Soma 认为,网络优化可以通过 AI 来实现,使用传统的 CPU 虽然可以通过虚拟化技术来执行复杂的网络任务,但也可以通过 GPU 加速来提升速度。5G 时代,随着 SDN 的应用,英伟达可以通过 GPU 实现低延迟、高带宽及高效率的网络任务。根据 Soma Velayutham 所说,未来手机上都可以实现 8K 视频及 VR。
电信行业还可以使用 DL 深度学习来提供网络质量,提前预测网络故障。目前,中移动、SK 电讯、AT&T、Docomo 等公司及机构都跟英伟达达成了这方面的合作。

Soma 举例,在美国莱斯大学的一份研究中,使用英特尔至强处理器,5G 网络的延迟、速度是 15.65 毫秒、103Mbps 速率;使用英伟达 Tesla V100 则可以实现 0.864 毫秒的延迟及 995Mbps 的速度,整体速度提升了 14 倍。
Ribbon 公司通过 GPU 来实现防火墙,之前用 DSP 来实现,我们的性能高出 3.5 被,比 CPU 高出 9 倍;并行的需求,GPU 是最好的方案。不需要每年软件重新,DSP、CPU,每年需要做调整。不需要做升级。
Soma 谈道,在 3G、4G 时代,FPGA 可以应对处理时延和灵活性;但在 5G 时代,网络需求变换更加频繁,应用负载更多。与 ASIC 及 FPGA 等加速方案相比,Soma 认为 GPU 加速更容易升级,扩展性更灵活,在 5G 需求日益增加的情况下,GPU 将方案显然更有优势。

此外,Soma 强调,GPU 的产品线足够丰富:从 15-7w 低功耗的嵌入式 Xavier 到可提供云服务级的 Tesla。在这些芯片中,防火墙、软件定义网络功能均可部署。
Soma 认为,5G 作为服务将需要在云端原生,5G 在端和云可以兼容。
考虑投资收益,Soma 分享了他与全球顶级运营商交流后,运营商使用 GPU 最为核心的需求:
1)降低成本,提高效率,基于多运算的并行性,来提高网络效率;
2)通过 AI 和深度学习技术,减少网络的复杂性,用 GPU 进行图像的渲染,用户提供沉浸式的服务。
Soma 表示,在和爱立信、华为等运营商建立 GPU 电信网络的过程中,双方会共同探讨 GPU 核心部件的使用方式,以提高基础设施的效率。
谈到 AI 对于电信行业的机会,Soma 表示,其中一个最为重要的就是基于 AI 算法对于 5G 通信的信道参数的准确估计,这是实现系统相干接收的必要条件。它需要根据 5G 系统所发送的导频信号估计出无线信号传播从发射端到接收端所经历的信道畸变,目前,算法经过 AI 技术的转换后提升效率非常高。
作为普适性的机器学习技术,AI 可以广泛应用于 5G 系统设计和优化的各个缓解,此外还包括组合优化问题、检测问题。5G NR(无线接入技术)的资源分配问题就是一个典型的组合优化问题。它需要从资源池中穷举出一组最优的资源配置方式,并据此将资源分配给网络覆盖范围内的多个用户,最大化资源利用率。
Soma 举例美国最大电信运营商 Verizon 的应用,他表示,AI 算法目前能够提前 6-7 天的资源分配情况,机器学习通过前期的大量运营数据学习后可转换为其长期记忆,以解决网络质量下降的问题。
此外,5G 通信最优接收机的设计就是一个典型的检测问题,其目标是对接收信号进行辨识,确定对应的发射信号,并使检测错误概率最低。

支持单位

主办单位

南亚安博会组委会

联合主办

泰国安防协会

云南省智慧城市集成服务商协会

昆明市应急救援协会

昆明市安保协会

昆明市民用无人机协会

承办单位

云南万隆会展服务有限公司

协办单位

北京斯图加特会展有限公司

北京中展华信展览有限公司

亨劢会展(上海)有限公司

版权所有:云南万隆会展服务有限公司 南亚安博会官网-2025南亚安博会-昆明安博会-云南安防展 

服务热线:13708730608  邮箱:905905199@qq.com  网站备案号:滇ICP备16007655号-22   公安备案号:滇公网安备53011102001483

地址:中国(云南)自由贸易试验区昆明片区官渡区春城路219号东航投资大厦606室  网站地图

展商报名

观众报名

联系我们